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A method of thermal shielding of an object with the help of a material with 
transverse pores and forced filtering of a gaseous coolant through the material 
is studied. 

In the process of operating and repairing power-saturated equipment as well as :n elim- 
inating faults it is necessary to provide effective thermal shielding of surrounding objects 
from high temperatures and strong fluxes of infrared radiation. Service personnel m~:st also 
be reliably protected from these factors. The use of standard thermal insulation often does 
not give the desired result. 

Calculations show that the problem can be solved by using active thermal shielding 
which insulates objects with a thermally insulating material containing transverse pores and 
with part of the penetrating heat removed by gaseous coolant forced through the system. This 
method reduces the average temperature of the thermal insulation and preserves its struc- 
tural properties [i]. The external conditions of heat exchange also change owing to the in- 
teraction of the gas filtering through the system with the boundary layer on the surface of 
the thermal insulator [2]. 

This paper is devoted to an analysis of the increase in the characteristic thermal re- 
sistance of insulation. 

For simplicity we shall study the process of thermal shielding for the example of a 
flat, infinite plate having a thickness & and made of a material containing transvers~ pores 
and having a constant effective thermal conductivity leff, which can be represented t~ some 
approximation in the form 

~eff= ~fr ~- ~ 

If To and T I are the temperatures of the surfaces of the plate, then according to Fou:=ier's 
law the density of the heat flux flowing through it is given by 

T 1 - - T ~  T 1 - - T ~  (1) 
qef~ qfw -~ qg = (~w q- ~ A R~ 

We shall now direct gas with a specific heat capacity Cp and flux density j through a 
plate on the side of the object being protected, whose temperature is T o . Then as a result 
of heat transfer from the material of the plato to the gas filtering through the system the 
heat flux in an infinitely thin layer of the plate with unit area is equal to 

dq= = %(~w --Tg)dX. (2) 

The heat flux spreading along the framework of the plate plays the role of a heat sin~ dqfw, 
which is related with the temperature of the framework Tfw by the expression 

dZTfw 
- -  dx. (3) dqYw=XfW dx ~ 

A s i m i l a r  r e l a t i o n  ho lds  between the  hea t  f low out  of  the  gas phase dqg and i t s  t empe r a tu r e  
Tg: 

dqg = ~ g d2Tg dx. (4 )  
dx 2 

In accordance with the energy balance both thermal flows are transmitted to the filtering 
gas and increase its enthalpy: 
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d%w + dqg = dh = i c p d ~  . (5 )  

Thus we can write a system of two differential equations, describing the distribution of the 
temperature of the framework of the plate and the gas, with two unknowns: 

d2Tfw dZTfw + ~g d2Tg dT s 
~w dx--- T = % (Tfw-- rg!, %fw dx--- U dx z = ]cp d----x- (6) 

The s y s t e m  (6)  r e d u c e s  t o  a f o u r t h - o r d e r  l i n e a r  d i f f e r e n t i a l  e q u a t i o n  w i t h  one unknown 

~g d~Tfw . daTfw a~ ( ~_~f~)~Tfw ~ d ~ w  
;~p dx ~ + ~ +  1+ --0. (7) Ic~ dx~ ~ x  

The general solution of Eq. (7) has the form 

~w (x) = CI exp (~ix) + C~ exp ($2x) + C3 exp (~x) + Ca, (8) 

where ~i, $2, and $3 are the roots of the characteristic cubic equation 

]cp ]cp , , ~fw 

Once t h e  a n a l y t i c a l  f o rm o f  t h e  r o o t s  h a s  been  d e t e r m i n e d  [3] i t  i s  n o t  d i f f i c u l t  t o  f i n d ,  
u s i n g  t h e  b o u n d a r y  c o n d i t i o n s  on t h e  s u r f a c e s  o f  t h e  p l a t e ,  t h e  v a l u e s  o f  t h e  i n t e g r a t i o n  
c o n s t a n t s  and t o  o b t a i n  t h e  s p e c i f i c  fo rm o f  t h e  g e n e r a l  s o l u t i o n  [ 8 ] .  

Fo r  a n a l y s i s  i t s  s i m p l e r  t o  s o l v e  t h e  p r o b l e m  when t h e  e f f e c t i v e  t h e r m a l  c o n d u c t i v i t y  
o f  t h e  p l a t e  i s  d e t e r m i n e d  by t h e  t h e r m a l  c o n d u c t i v i t y  o f  i t s  f r a m e w o r k ,  i . e . ,  X e f f  = Xfw >> 
~g. ( S i m i l a r  a s s u m p t i o n s  were  a l s o  made in  [4 ,  5 ] . )  

I n  t h i s  c a s e  t h e  s t a r t i n g  s y s t e m  o f  e q u a t i o n s  can  be w r i t t e n  a s  f o l l o w s :  

~Tfw Tg), X ~Tfw dTs 
Xfw dxZ = ~v (T fw-  fw dx 2 = ]Cp dx ( 6 ' )  

The system (6') reduces to one equation 

]Cp ~Tfw 
~v dx3 

whose general solution has the form 

~rfw i% dr fw = 0, (7') 

dxZ ~' fw dx 

Tfw (x) = Ci exp (r + C~ exp (r + C3. 

The r o o t s  ~z and ~0 2 o f  t h e  c h a r a c t e r i s t i c  e q u a t i o n  

]cp V + r ]cA - 0 

C% ~fw 
can be expressed as 

(8') 

/ ( "o 1 + 

If the temperature of the filtering as at the inlet to the plate is equal to the tem- 
perature of the surface of the plate, then the boundary conditions of the problem will be 
as follows : 

d2Tfw 
TfwlX=O = To; Tfw{.=a = TG ~ .=o = 0. 

The particular solution satisfying these conditions will be 

[exp (~lx) - -  11 - -  [exp (~x)  - -  11 

Tfw (x) = To + (T1 - -  To) / ,2 ( 10 ) r 
[exp (~IA) - -  1] - -  [ ~ [exp (~A) - -  1] 

\ r 

The temperature of the gas can be found by using the first equation of the system (6'). It 
follows from it, using (I0), that 
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Fig. i. The distribution of the temperature of the frame- 
work of a porous plate Tfw and the filtering gas Tg with 

Tglx= 0 (a) and with dTfw/dxlx= 0 = 0 (b). The temperature 

curves were constructed for the case k = 4"10 -2 m, Xfw = 
i0 -I BT/(m'K), j = 5"i0 -2 Kg/(m2"c), Cp = i0 s /(KT'K), 

a v = i0 4 BT/(Ma.K) 

%fw d2Tfw 
% dx ~ 

,I) 2 
[exp (,tx) -- !1 -- (-~-= {exp (,~x) -- 1] 

= To -}- (r~ -- To) { -- ( 11 ) 
[exp(,xA)--1]--(*------!--*) 2 *~ [exp (*ok) -- 1] 

fw ~ exp (*ix) - -  exp (*2x) 1 

a~ [exp ( , ~ A ) 1 1  ( , @ ) 2  j -- --  [exp(%k)-- 11 
l t F2  / �9 

The form of the  dependences (10) and (11) i s  p re sen ted  in Fig.  la .  

The express ion  for  the  hea t  f lux  p e n e t r a t i n g  through the  p l a t e  and reaching  the  ob jec t  
being p r o t e c t e d  can be ob ta ined  from the  express ion  (10) using the  dependence 

_~ dT I 
q[.=o : fw dx t~=o : 

(12) 
* * A - - (  , @ - 1 2 , ~ A  

--T~ \ ~'~ ]2 _TI- -To 
='kfwT* A [ e x p ( , 1 A ) - - l l - - ( . 1 - )  [exp(,~A)---l] Rg 

Comparing the expressions (i) and (12) makes it possible to determine the effectiveness 
of the active thermal shielding. If it is characterized by the coefficient RT/R~, which we 
shall call the coefficient of active thermal shielding, then it will be determined by the 
following relation : 

[exp ( , 1 A ) -  1 ] -  ( *~ / 2 [exp ( ,~A) -  1} 

n = (13) 

\ *,, ] 

If, however, complete thermal shielding of the object must be achieved, the tempera- 
ture of the injected gas must be lowered relative to the temperature of the inner surface of 
the plate. We shall find for this the solution of Eq. (7') with the following boundary con- 
ditions : 
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TfwlX=O --- To; Tfw]X=a = T1; dTfw : :  0. 
dx x=o 

After the integration constants in Eq. (8') are determined we obtain the following expres- 
sion for the temperature of the plate framework: 

[exp (~IX) -- i] -- ~ [exp ($,x) -- I] 

Tfw(X ) = T o -]- (T~-- To) ~2 .................... (14)  
[exp (%A) - -  11 - -  I I .1 [exp (,2A) -- 11 

The temperature of the filtering gas will then be 

d2Tfw(x) 
r g  (X) : Tfw (X) 0~, dx 2 - -  

[exp (~lx) - -  II - -  ~' [exp (~x) - -  11 
= To + (T1 + To) { ~" - -  

[exp (r - -  1] . . . . . .  ~ [  l'' [exp (q~A) - -  11 ( 15 ) 

K fw ~I exp Ohx) - -  ~2 exp (~.x) ] 
--- 1.1J 1 . . . . . .  

o% [exp(r 1]--  ~--i--* [exp(~2A)-- t l  1" 

The distribution of the temperatures Tfw(X) and Tg(x) in the plate is shown in Fig. lb. 

An even simpler case is the case when owing to intense heat exchange between the plate 
framework and the gas, local thermal equilibrium Tfw(X) z T~(x) holds. To analyze this case 
we shall transform the expression (9), multiplying and divi~ing it by the conjugate expres- 
sion: 

}]I'=-- 2]c, ~]1  + ~ f W - -  

0% ( 1 6 )  
)~fw /c~ 2 

2]cp \ 2]cp ] %fw ' O~")Vfw 

It follows from here that for (jCp)2/~vkfw << i, i.e., for a definite combination of the 
quantities characterizing the forms of heat transfer within the plate, the roots of the 
characteristic equation will have the following form: 

~fw ]Cp ( 9 '  ) 

The e x p r e s s i o n  c h a r a c t e r i z i n g  t h e  maximum t e m p e r a t u r e  n o n u n i f o r m i t y  in  t h e  p l a t e ,  as  
follows from Eq. (ii) (see also Fig. la), is equal to the relative difference of the temper- 
atures of the framework and gas at the surface of the plate: 

�9 67'1~=a = (Tfw -- Tg)]x'=a . . . . .  
T - -  To 

_ ~fw @~ exp (~hA)-- exp (%A) I 

% [exp (~,,A) -- 11 -- ( ~ ,~2 [exp (~A) -- 1] 

Analysis of this expression together with the formula (16) leads to the following conclu- 
sions: as the thickness of the plate is increased the quantity 6Tlx= A approaches the value 
(jCp)2/~vXfw, coming closest to it for thicknesses satisfying the condition A >> ~fw/~ v- 

Thus in order for there to be a temperature equilibrium between the phases in the plate the 
following system of inequalities must be satisfied: 

ic;~<< V~v~f~ A >> {//Y ;~fw ; (17) 
V 
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Fig. 2 
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Fig. 3 

Fig. 2. The relative difference of the temperatures of the 
framework and gas on the outer surface of the plate 6T[x=A 

versus the thickness of the plate & (in m) with ~fw----10 -I W/(m'K) 
=~=I0~ W/(m'K);icp: I--5; 2--20; 3--50 W/(m.K). 

Fig. 3. The distribution of the temperature within the 
plate as a function of the coordinate x for different values 
of the parameter ~IA = 0; i; 2; 3; 4; 5 

this is shown in Fig. 2. The temperature is described by the expression 

Tg(x) ~ Tfw (x) ~ T o + (T 1 - -  To) exp ( ~ x )  - -  1 
exp (~hA) -- 1" ( 18 ) 

The distribution of the temperature in the plate is shown in Fig. 3. The efficiency ~f the 
thermal shielding in this case is equal to 

R~ exp ( ,1~) -- l 
n = - - =  ( 1 9 )  

Its dependence on the parameter ~L& is shown in Fig. 4. 

It should be noted that in the last case the assumption made above, namely ifw ~ ig, 
is by no means necessary. Moreover, the additive form of the representation of the effective 
thermal conductivity hef f = Xfw + hg itself is of no significance. The effective thermal 
conductivity of the material in the atmosphere of filtering gas at rest Xef f should enter in 
the formula determining ~i instead of Xfw. 

In the practical applications of the expressions obtained by solving the system c~f 
equations (6) in (6') the term ~v, characterizing the intensity of the thermal interaction 
between the porous material of the plate and the gas filtering through it, introduces the 
greatest uncertainty. The quantity ~v, or the coefficient of internal heat transfer, de- 
pends on the structure of the porous material, the velocity of the gas flowing through it, 
and its physical parameters. Its value can be determined, for example, from the criterional 
equation presented in [5]. In practice it often turns out that the condition (17) holds, 
thanks to which it is permissible to use the simplified expressions (18) and (19), describ- 
ing the process of active thermal shielding under conditions of local temperature equilibrium 
between the framework and the gas. 

In summarizing what was said above we note that active thermal shielding gives a nany- 
fold increase in the thermal resistance of porous materials; this is equivalent to the use 
of hypothetical thermal insulators with an extremely low thermal conductivity. 

NOTATION 

Cp, mass heat capacity at constant pressure; j, mass flux density; q, heat flux density; 
h, enthalpy; R~, R~, thermal resistance of the plate in the regime of passive and active 
heat shielding, respectively; T, temperature; x, coordinate; ~v, coefficient of heat t::ans- 
fer; A, thickness; leff, effective coefficient of thermal conductivity of the porous mater- 
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Fig .  4. The e f f i c i e n c y  of  a c t i v e  thermal  
shielding versus the parameter ~i~ 

ial; Ifw and Ig, component of the effective thermal conductivity of the porous material de- 
termined by its framework and the gas phase, respectively; and, g and ~, roots of the char- 
acteristic equations. 
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ENERGY DISSIPATION IN A SOUND WAVE IN THE PRESENCE 

OF EVAPORATION AND CONDENSATION AT A SURFACE 

V. I. Nosik and D. A. Rus'yanov UDC 536.6.011 

We consider the transmission and absorption of plane and spherical acoustic 
waves in the presence of evaporation and condensation at a flat surface. A 
sound absorbing device is considered as an example. 

The reduction of noise is a crucial problem in many fields of technology: ship-build- 
ing and aircraft construction, architecture, radio, television, and concert studios, and in 
manufacturing plants. Noise from internal sources is reduced using devices based on absorp- 
tion of sound waves caused by friction in porous bodies, resonators, surface vibrations, and 
so forth. Noise from external sources can be reduced by means of sound insulation (sound- 
proofing), where, together with energy absorption, reflection and refraction of waves on the 
boundary between media with different impedances are also important. The search for new 
ways of dissipating sound wave energy is important in both sound absorption and in sound in- 
sulation. 

Hence it is of interest to consider the interaction of sound waves propagating through 
a saturated vapor with the surface between two phases. Indeed, pressure oscillations in the 
gas caused by the incident wave excite velocity oscillations at the interface because of the 
Hertz-Knudsen condition [1-3] and therefore the intensities of the reflected and refracted 
waves change. As shown in [4-6], the intensity of the reflected wave can be significantly 
reduced as a result of evaporation and condensation at the surface. This result is obtained 
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